Bayesian and Maximum Likelihood Estimation for Kumaraswamy Distribution Based on Ranked Set Sampling
نویسنده
چکیده
In this paper, the estimation of the unknown parameters of the kumaraswamy distribution is considered using both simple random sampling (SRS) and ranked set sampling (RSS) techniques. The estimation is based on maximum likelihood estimation and Bayesian estimation methods. A simulation study is made to compare the resultant estimators in terms of their biases and mean square errors. The efficiency of the estimates made using ranked set sampling are also computed.
منابع مشابه
Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملWeibull-Bayesian Estimation Based on Maximum Ranked Set Sampling with Unequal Samples
A modification of ranked set sampling (RSS) called maximum ranked set sampling with unequal sample (MRSSU) is considered for the Bayesian estimation of scale parameter α of the Weibull distribution. Under this method, we use Linex loss function, conjugate and Jeffreys prior distributions to derive the Bayesian estimate of α. In order to measure the efficiency of the obtained Bayesian estimates ...
متن کاملExp-Kumaraswamy Distributions: Some Properties and Applications
In this paper, we propose and study exp-kumaraswamy distribution. Some of its properties are derived, including the density function, hazard rate function, quantile function, moments, skewness and kurtosis. Adata set isused to illustrate an application of the proposed distribution. Also, we obtain a new distribution by transformation onexp-kumaraswamy distribution. New distribution is an...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کامل